ADVANCED MATHEMATICS
Final Exam - January 2013
Name:
NIU: $\qquad$ Group: $\qquad$
Grade:

Instructions: The exam consists of six questions. You have two hours to give a reasoned answer to all the exercises. Write the quiz entirely in ink.

01 Determine for which values of the parameter $a$ the matrix $A$ is diagonalizable.

$$
A=\left(\begin{array}{lll}
0 & 0 & a \\
2 & 1 & 2 \\
a & 0 & 0
\end{array}\right)
$$

2 Suppose that in a given market with a single commodity the demand function is $D(P)=2-P$ and the supply function is $S(P)=-1+2 P$, where $P>0$ denotes the unitary price of the good. Assume that time is discrete and that the market follows the dynamics of the Cobweb Model, that is, $S\left(P_{t}\right)=D\left(P_{t+1}\right)$ for every $t$. Calculate the equilibrium price and study whether it is globally asymptotically stable.

3 Solve the system of difference equations

$$
X_{t+1}=A X_{t}
$$

where $A$ is the matrix of Exercise 1 when $a=2$. Is this system globally asymptotically stable? Is there any initial condition $X_{0}$ such that the solution converges?

4 Solve the following differential equation:

$$
x^{\prime}=-\frac{x^{2}+x+2 t x}{t^{2}+t+2 t x},
$$

where $x(0)=1$.

5 Obtain the solutions of the following differential equation:

$$
x^{\prime \prime \prime}-3 x^{\prime \prime}+3 x^{\prime}-x=\sin t
$$

6 Obtain the solution to the following system:

$$
X^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) X+\binom{e^{t}}{e^{2 t}}
$$

Instructions: The exam consists of six questions. You have two hours to give a reasoned answer to all the exercises. Write the quiz entirely in ink.

01 Determine for which values of the parameter $a$ the matrix $A$ is diagonalizable.

$$
A=\left(\begin{array}{lll}
0 & 0 & a \\
2 & 1 & 2 \\
a & 0 & 0
\end{array}\right)
$$

Solution. The eigenvalues of $A$ are $\sigma(A)=\{1, a,-a\}$. If $a \in \mathbb{R} \backslash\{0,1,-1\}$ then the three roots are real and different each other, and $A$ is diagonalizable. We study the other three cases:
(a) If $a=0$. Then $\sigma(A)=\{1,0\}$ with $m(1)=1$ and $m(0)=2$. We compute the dimension of $S(0)$, $\operatorname{dim} S(0)=3-\operatorname{rank}\left(A-0 \cdot 1_{3}\right)=3-1=2$, which coincides with its multiplicity. Therefore, the matrix $A$ is diagonalizable.
(b) If $a=-1$. Then $\sigma(A)=\{1,-1\}$ with $m(-1)=1$ and $m(1)=2$. We compute the dimension of $S(1)$, $\operatorname{dim} S(1)=3-\operatorname{rank}\left(A-1 \cdot I_{3}\right)=3-1=2$, which coincides with its multiplicity. Therefore, the matrix A is diagonalizable.
(c) If $a=1$. Then $\sigma(A)=\{1,-1\}$ with $m(1)=2$ and $m(-1)=1$. On the other hand, $\operatorname{dim} S(1)=$ $3-\operatorname{rank}\left(A-1 \cdot I_{3}\right)=3-2=1$. Since the dimension of the eigenspace and the multiplicity do not coincide, the matrix $A$ is not diagonalizable.
2 Suppose that in a given market with a single commodity the demand function is $D(P)=2-P$ and the supply function is $S(P)=-1+2 P$, where $P>0$ denotes the unitary price of the good. Assume that time is discrete and that the market follows the dynamics of the Cobweb Model, that is, $S\left(P_{t}\right)=D\left(P_{t+1}\right)$ for every $t$. Calculate the equilibrium price and study whether it is globally asymptotically stable.

Solution. The difference equation we need to solve is

$$
-1+2 P_{t}=2-P_{t+1} \equiv P_{t+1}+2 P_{t}=3
$$

The characteristic polynomial of the associated homogeneous equation is $r+2=0$; hence $x_{t}^{h}=A_{0}(-2)^{t}$. Since the independent term $b_{t}=3$ is a polynomial of degree zero, we try as particular solution $x_{t}=C$. Once we substitute into the equation we obtain that $x_{t}^{p}=C=1$. Finally

$$
p_{t}=A_{0}(-2)^{t}+1
$$

The equilibrium price is $p=1$, and it is not globally asymptotically stable.
3 Solve the system of difference equations

$$
X_{t+1}=A X_{t}
$$

where $A$ is the matrix of Exercise 1 when $a=2$. Is this system globally asymptotically stable? Is there any initial condition $X_{0}$ such that the solution converges?

Solution. When $a=2, \sigma(A)=\{1,2,-2\}$, and $S(1)=<(0,1,0)>, S(2)=<(1,4,1)>$ and $S(-2)=<(-1,0,1)>$. The system is homogeneous, and therefore

$$
x_{t}=A_{0} 1^{t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+A_{1} 2^{t}\left(\begin{array}{l}
1 \\
4 \\
1
\end{array}\right)+A_{2}(-2)^{t}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

Since not all the eigenvalues are smaller than 1, the system is not globally asymptotically stable. On the other hand, the solution will converge for an initial condition $X_{0}$ only if $A_{1}=A_{2}=0$

$$
\left(\begin{array}{l}
a \\
\beta \\
y
\end{array}\right)=X_{0}=A_{0} 1\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
1 \\
4 \\
1
\end{array}\right)+0\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \Leftrightarrow a=y=0
$$

For $X_{0}=(0,1,0)$, for example, the solution converges.

Solve the following differential equation:

$$
x^{\prime}=-\frac{x^{2}+x+2 t x}{t^{2}+t+2 t x},
$$

where $x(0)=1$.
Solution. It is an exact equation whose canonical form is $\left(x^{2}+x+2 t x\right) d t+\left(t^{2}+t+2 t x\right) d x=0$ In this case, $P(t, x)=x^{2}+x+2 t x$ and $Q(t, x)=t^{2}+t+2 t x$. We check the condition to be exact:

$$
\frac{\partial P}{\partial x}=2 x+1+2 t=\frac{\partial Q}{\partial t} .
$$

- Let $F(t, x)$ be the solution of the equation we are looking for.
- Impose that

$$
\frac{\partial F(t, x)}{\partial t}=P(t, x) \Rightarrow \frac{\partial F(t, x)}{\partial t}=x^{2}+x+2 t x,
$$

by integrating both sides with respect to $t$, we can isolate $F(t, x)$.

$$
F(t, x)=x^{2} t+x t+x t^{2}+h(x) .
$$

- Now, impose that

$$
\frac{\partial F(t, x)}{\partial x}=Q(t, x) \Leftrightarrow h^{\prime}(x)=0
$$

- To obtain $h(x)$, simply integrate.

$$
h(x)=0 .
$$

- Substitute $h(x)$ in the expression of Step 2 , and then:

$$
F(t, x)=x^{2} t+x t+x t^{2} .
$$

- The solution to the exact equation is given in implicit form:

$$
x^{2} t+x t+x t^{2}=C
$$

Now, we impose the initial condition $x(0)=1$ to obtain that $C=0$. Therefore, the solution is $t^{2}+x^{2}-3 t x=0$.

5 Obtain the solutions of the following differential equation:

$$
x^{\prime \prime \prime}-3 x^{\prime \prime}+3 x^{\prime}-x=\sin t
$$

Solution. The roots of the characteristic polynomial are $r=1$ with $m(1)=3$. Then,

$$
x^{h}(t)=A_{0} e^{t}+A_{1} t e^{t}+A_{2} t^{2} e^{t}
$$

Since $b(t)=\sin t$, we propose $x(t)=C \sin t+D \cos t$. Taking the needed derivatives and substituting we get that $C=\frac{1}{4}$ and $D=\frac{-1}{4}$. And the,

$$
x^{p}(t)=\frac{1}{4} \sin t-\frac{1}{4} \cos t
$$

Finally

$$
x(t)=A_{0} e^{t}+A_{1} t e^{t}+A_{2} t^{2} e^{t}+\frac{1}{4} \sin t-\frac{1}{4} \cos t
$$

6 Obtain the solution to the following system:

$$
X^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) X+\binom{e^{t}}{e^{2 t}}
$$

Solution. Since the matrix is already diagonal, then we know that $D=P=P^{-1}=I_{3}$, which implies that the solution to the associated homogeneous system is:

$$
x^{h}(t)=K_{0} e^{t}\binom{1}{0}+K_{1} e^{2 t}\binom{0}{1}
$$

In order to obtain a particular solution, we solve the system

$$
K_{0}^{\prime} e^{t}\binom{1}{0}+K_{1}^{\prime} e^{2 t}\binom{0}{1}=\binom{e^{t}}{e^{2 t}} \equiv K_{0}^{\prime}=K_{1}^{\prime}=1 \quad \equiv \quad K_{0}=K_{1}=t
$$

Then, a particular solution is

$$
X^{p}(t)=t e^{t}\binom{1}{0}+t e^{2 t}\binom{0}{1}=\binom{t e^{t}}{t e^{2 t}}
$$

Finally,

$$
X(t)=K_{0} e^{t}\binom{1}{0}+K_{1} e^{t}\binom{0}{1}+\binom{t e^{t}}{t e^{2 t}}
$$

